Drought is one of the main factors contributing to tree mortality worldwide and drought events are set to become more frequent and intense in the face of a changing climate. Quantifying water stress of forests is crucial in predicting and understanding their vulnerability to drought-induced mortality. Here, we explore the use of high-resolution spectroscopy in predicting water stress indicators of two native Australian tree species, Callitris rhomboidea and Eucalyptus viminalis. Specific spectral features and indices derived from leaf-level spectroscopy were assessed as potential proxies to predict leaf water potential (Ψleaf), equivalent water thickness (EWT) and fuel moisture content (FMC) in a dedicated laboratory experiment. New spectral indices were identified that enabled very high confidence linear prediction of Ψleaf for both species (R2 > 0.85) with predictive capacity increasing when accounting for a breakpoint in the relationships using segmented regression (E. viminalis, R2 > 0.89; C. rhomboidea, R2 > 0.87). EWT and FMC were also linearly predicted to a high accuracy (E. viminalis, R2 > 0.90; C. rhomboidea, R2 > 0.80). This study highlights the potential of spectroscopy as a tool for predicting measures of plant water noninvasively, enabling broader applications for monitoring and managing plant water stress.
Read full abstract