The purpose of this paper is by using CSQ method to study the strong convergence problem of iterative sequences for a pair of strictly asymptotically pseudocontractive mappings to approximate a common fixed point in a Hilbert space. Under suitable conditions some strong convergence theorems are proved. The results presented in the paper are new which extend and improve some recent results of Acedo and Xu [Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal., 67(7), 2258–2271 (2007)], Kim and Xu [Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups. Nonlinear Anal., 64, 1140–1152 (2006)], Martinez-Yanes and Xu [Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal., 64, 2400–2411 (2006)], Nakajo and Takahashi [Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl., 279, 372–379 (2003)], Marino and Xu [Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces. J. Math. Anal. Appl., 329(1), 336–346 (2007)], Osilike et al. [Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps. J. Math. Anal. Appl., 326, 1334–1345 (2007)], Liu [Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings. Nonlinear Anal., 26(11), 1835–1842 (1996)], Osilike et al. [Fixed points of demi-contractive mappings in arbitrary Banach spaces. Panamer Math. J., 12 (2), 77–88 (2002)], Gu [The new composite implicit iteration process with errors for common fixed points of a finite family of strictly pseudocontractive mappings. J. Math. Anal. Appl., 329, 766–776 (2007)].