The manipulation of nano-objects through heating is an effective strategy for inducing structural modifications and therefore changing the optoelectronic properties of semiconducting materials. Despite its potential, the underlying mechanism of the structural transformations remains elusive, largely due to the challenges associated with their in situ observations. To address these issues, we synthesize temperature-sensitive CsPbBr3 perovskite nanoplatelets and investigate their structural evolution at the nanoscale using in situ heating transmission electron microscopy. We observe the morphological changes that start from the self-assembly of the nanoplatelets into ribbons on a substrate. We identify several paths of merging nanoplates within ribbons that ultimately lead to the formation of nanosheets dispersed randomly on the substrate. These observations are supported by molecular dynamics simulations. We correlate the various paths for merging to the random orientation of the initial ribbons along with the ligand mobility (especially from the edges of the nanoplatelets). This leads to the preferential growth of individual nanosheets and the merging of neighboring ones. These processes enable the creation of structures with tunable emission, ranging from blue to green, all from a single material. Our real-time observations of the transformation of perovskite 2D nanocrystals reveal a route to achieve large-area nanosheets by controlling the initial orientation of the self-assembled objects with potential for large-scale applications.
Read full abstract