Methods that distinguish dynamical regimes in networks of active elements make it possible to design the dynamics of models of realistic networks. A particularly salient example of such dynamics is partial synchronization, which may play a pivotal role in emergent behaviors of biological neural networks. Such emergent partial synchronization in structurally homogeneous networks is commonly denoted as chimera states. While several methods for detecting chimeras in networks of spiking neurons have been proposed, these are less effective when applied to networks of bursting neurons. In this study, we propose the correlation dimension as a novel approach that can be employed to identify dynamic network states. To assess the viability of this new method, we study networks of intrinsically bursting Hindmarsh–Rose neurons with non-local connections. In comparison to other measures of chimera states, the correlation dimension effectively characterizes chimeras in burst neurons, whether the incoherence arises in spikes or bursts. The generality of dimensionality measures inherent in the correlation dimension renders this approach applicable to a wide range of dynamic systems, thereby facilitating the comparison of simulated and experimental data. This methodology enhances our ability to tune and simulate intricate network processes, ultimately contributing to a deeper understanding of neural dynamics.