Blocking Delta-like 4 (DLL4)/Notch has emerged as a promising therapeutic target for the treatment of tumours by deregulating angiogenesis. However, DLL4/Notch serves as a negative regulator of angiogenesis in multiple organs while acting as a positive regulator of H-type angiogenesis in postnatal long bones. Therefore, the effect of DLL4/Notch signalling blockade on mandibular condylar osteogenesis attracted our attention. To explore the effect of blocking DLL4/Notch on mandibular advancement (MA)-induced condylar osteogenesis. Six-week-old young male C57BL/6J mice (n = 40) were randomly divided into four groups: control group, MA group, MA + Anti-DLL4 group and MA + IgG group. Of note, IgG served as the isotype control for the anti-DLL4. The femurs, tibias and mandibular condyles were collected after sacrificing mice on Day 31 for morphology, micro-computed tomography, immunofluorescence, histology and immunohistochemistry evaluation. First, DLL4/Notch blockade shortened femoral length and reduced bone mass by inhibiting H-type angiogenesis. Second, DLL4/Notch blockade disrupted MA-induced condylar head volume and quality by inhibiting H-type angiogenesis. Mechanistically, blocking DLL4/Notch reduced the number of runt-related transcription factor 2+ (RUNX2+ ) early osteoprogenitors and the expression of Noggin protein in the condylar subchondral bone by inhibiting H-type angiogenesis. In addition, blockade of DLL4/Notch also destroyed the condylar cartilage layer. DLL4/Notch blockade results in shortened femurs and osteopenia, as well as impaired MA-induced condylar osteogenic volume and quality in growing mice by inhibiting H-type angiogenesis. Therefore, when blocking DLL4/Notch is used as a treatment target for diseases, attention should be paid to its impact on the bone mass of mandibular condyle.
Read full abstract