The aim of this study is to explore the effects of abnormal occlusion and functional recovery caused by functional mandible deviation on the head and neck muscles and muscle spindle sensory-motor system by electrophysiological response and endogenous monoamine neurotransmitters’ distribution in the nucleus of the spinal tract. Seven-week-old male Wistar rats were randomly divided into 7 groups: normal control group, 2W experimental control group, 2W functional mandible deviation group, 2W functional mandible deviation recovery group, 4W experimental control group, 4W functional mandible deviation group, 4W functional mandible deviation recovery group. Chewing muscles, digastric muscle, splenius, and trapezius muscle spindles electrophysiological response activities at the opening and closing state were recorded. And then the chewing muscles, digastric, splenius, trapezius, and neck trigeminal nucleus were taken for histidine decarboxylase (HDC) detection by high performance liquid chromatography (HPLC), immunofluorescence, and reverse-transcription polymerase chain reaction (RT-PCR). Histamine receptor proteins in the neck nucleus of the spinal tract were also examined by immunofluorescence and RT-PCR. Electromyography activity of chewing muscles, digastric, and splenius muscle was significantly asymmetric; the abnormal muscle electromyography activity was mainly detected at the ipsilateral side. After functional mandibular deviation, muscle sensitivity on the ipsilateral sides of the chewing muscle and splenius decreased, muscle excitement weakened, modulation depth decreased, and the muscle spindle afferent impulses of excitation transmission speed slowed down. Changes for digastric muscle electrical activity were contrary. The functions recovered at different extents after removing the deflector. However, trapezius in all the experimental groups and recovery groups exhibited bilateral symmetry electrophysiological responses, and no significant difference compared with the control group. After functional mandibular deviation, HDC protein and messenger ribonucleic acid (mRNA) levels on the ipsilateral sides of the chewing muscle and splenius increased significantly. HDC level changes for digastric muscle were contrary. After the removal of the mandibular position deflector, HDC protein and mRNA levels decreased on the ipsilateral sides of the chewing muscle and splenius while they increased in the digastric muscle. The difference of histamine decarboxylase content in the bilateral trapezius in each experimental group was small. After functional mandibular deviation, the temporomandibular joint mechanical receptors not only caused the fusimotor fiber hypoallergenic fatigue slow response on the ipsilateral sides of splenius, but also increased the injury neurotransmitter histamine release. The authors’ results further support the opinion that the temporomandibular joint receptors may be involved in the mechanical theory of the head and neck muscles nervous system regulation.
Read full abstract