The effective management of urban waste represents a growing challenge in the face of demographic evolution and increased consumption. This study explores the impacts of municipal strategic decisions on household waste management behaviours and sustainability performance outcomes through agent-based modelling. Using data from Gatineau and Beaconsfield in Quebec, Canada, the model is calibrated and validated to represent diverse urban contexts. Our analysis demonstrates that reducing collection frequency leads to notable increases in participation rates, reaching 78.2 ± 5.1% for collections every two weeks and 96.5 ± 8.3% for collections every five weeks. While this reduction improves bin filling levels, it concurrently decreases the recovery of recyclable materials by 2.8% and 19.5%, significantly undermining the environmental benefits of the recycling program. These findings highlight a complex interplay between collection frequency, citizen participation behaviour, waste stream characteristics, and overall environmental performance. While reducing collection frequency initially appears beneficial, it leads to operational challenges and increased CO2 emissions due to reduced material recovery. The research emphasises the need for tailored holistic waste management strategies that optimise performance outcomes while minimising environmental impacts. By understanding these dynamics, municipalities can develop more effective waste management policies that promote sustainability.