ABSTRACTRecent advancements in naturally derived bioadhesives have transformed their application across diverse medical fields, including tissue engineering, wound management, and surgery. This review focuses on the innovative development and multifunctional nature of these bioadhesives, particularly emphasizing their role in enhancing adhesion performance in wet environments and optimizing mechanical properties for use in dynamic tissues. Key areas covered include the chemical and physical mechanisms of adhesion, the incorporation of multi‐adhesion strategies that combine covalent and non‐covalent bonding, and bioinspired designs mimicking natural adhesives such as those of barnacles and mussels. Additionally, the review discusses emerging applications of bioadhesives in the regeneration of musculoskeletal, cardiac, neural, and ocular tissues, highlighting the potential for bioadhesive‐based therapies in complex biological settings. Despite substantial progress, challenges such as scaling lab‐based innovations for clinical use and overcoming environmental and mechanical constraints remain critical. Ongoing research in bioadhesive technologies aims to bridge these gaps, promising significant improvements in medical adhesives tailored for diverse therapeutic needs.
Read full abstract