Sphingosine kinase-1 (SPHK1), the enzyme that catalyzes the synthesis of the pro-oncogenic molecule sphingosine-1-phosphate, is commonly upregulated in breast cancer cells and has been linked with poor prognosis and progression by promoting cell transformation, proliferation, angiogenesis, and metastasis. Therefore, SPHK1-targeting drugs have been proposed for breast cancer treatment, with better antitumor results when they are combined with chemotherapy. Previously, we demonstrated that the synthetic flavonoid 2'-nitroflavone (2'NF) exerted a potent and selective antiproliferative effect in murine HER2-positive LM3 mammary tumor cells. As we found that these cells overexpress SPHK1, we decided to explore the antitumor action of the combination of SPHK inhibitors (safingol or SKI-II) with 2'NF. In vitro assays showed that the combination induced a synergistic antiproliferative effect in LM3 cells. Similar results were obtained when human HER2-positive MDA-MB-453 breast cancer cells were treated with the combination of 2'NF/safingol. We also found that safingol potentiated the 2'NF apoptotic effect in both cell lines. The synergistic antitumor effect was confirmed in vivo in an LM3 syngeneic breast cancer model. Moreover, western blot analysis of tumor lysates revealed that combined treatment increased PARP cleavage and Bax protein levels and decreased anti-apoptotic Bcl-xL and Bcl-2 protein levels. Additionally, mice treated with both compounds showed no histopathological effects on different organ tissues. In summary, these findings suggest that the combination safingol/2'NF can be proposed as a potential therapeutic strategy for HER2-positive breast cancer treatment. KEY MESSAGES: The combination safingol/2'-nitroflavone exerts a synergic antitumor action in vitro. Safingol potentiates 2'-nitroflavone apoptotic effect in breast cancer cells. Safingol enhances the 2'-nitroflavone antitumor activity in vivo in breast cancer.