The availability and quality of food resources can alter the intensity of competition and predation pressure within communities. Understanding species capacity to respond to global change-driven shifts in resource distribution is therefore crucial for biodiversity conservation. Small mammal communities are often structured by competition for food resources, but understanding and monitoring these processes are currently hindered by lack of functional dietary trait information in these hard-to-sample systems. In this study, we collected a comprehensive suite of gastrointestinal (GI) measurements from 26 small mammal species (including some never reported), compared them with more traditional craniodental traits in predicting dietary guild, and used them in a novel way to understand how diet structures 22 small mammal communities across the Appalachian Mountains of eastern North America. As predicted, we found GI traits to be effective dietary trait proxies; they were equally or more accurate than craniodental proportions in predicting the dietary guild of individual species. Furthermore, at the community level, we found that both the mean and functional dispersion of GI length were positively correlated with latitude and measures of temperature seasonality. Our results indicate that small mammal communities in more seasonal environments are filtered to include species with longer GI tracts (on average) as well as those that can partition food resources more finely, as expected based on the lower productivity of these regions. Conversely, communities in less seasonal environments display functional redundancy from the addition of species with short to intermediate GI lengths. Proportions of the GI tract represent novel dietary traits that can illuminate community assembly processes across regional environmental gradients and in the face of changing timing and availability of resources.