Maltase can catalyze the hydrolysis of α-1,4-glucosidic linkages and release α-d-glucoses that are used as a source of energy by insects. Maltase has been extensively studied in Lepidoptera and Diptera, while the characterization and evolutionary history of maltase are largely unknown in Hymenoptera. Here, we undertook a bioinformatics study and identified 105 maltase genes in 12 fig wasp species. Together with the maltase genes of Nasonia vitripennis and Apis mellifera, phylogenetic analysis showed that all the maltase genes were clustered into three clades. Clade I and III included maltase genes from all the fig wasp species, while clade II contained the maltase genes from non-pollinating fig wasps (NPFWs) only. Interestingly, the maltase genes located in clade II were intronless. Fig pollinators and NPFWs had lineage-specific gene expansion in clade I and II respectively, which were mainly derived from tandem duplications. The three clades displayed distinct gene structures. Furthermore, maltase showed significant functional divergence among the three clades and the critical amino acid sites were detected. These sites could be responsible for the ligand-binding preference and hydrolytic specificity. Overall, our results demonstrated that maltase might contribute to the discrepancy of life histories and feeding regimes between fig pollinators and NPFWs.
Read full abstract