Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.
Read full abstract