AbstractThe impact of the introduced red king crab (RKC), Paralithodes camtschaticus, in the Barents Sea was mostly studied through its direct predation on native species. This study uses stable isotope analysis of carbon and nitrogen to characterize major trophic groups (including grazing sea urchins) and specifically looks at RKC's trophic position and niche partitioning with the native hermit and spider crab species. To achieve this, we sampled organisms from the food web of a small fjord‐like Zelenaya Inlet on the Murmansk coast in the southwestern Barents Sea and the open sea coast, just outside the inlet for comparison. There, macrophyte‐derived carbon is the major source of organic matter along with the phytoplankton. In general, the fucoid source of primary production was more prominent within the inlet food web compared to the nearby open coastal zone. Isotopic trophic niches calculated using SIBER analysis showed partition between the native hermit and spider crabs suggesting, some degree of trophic segregation between coevolved species. RKCs are clustered together in the center of native decapod species' niches. There were some distinct differences between the feeding habits of RKCs within the inlet and the open sea coastal waters. The subadult RKCs that are present in the inlet throughout the year have a narrower (in the area and specifically in δ15N dimension) niche than the adults from the open sea. The latter have a wider variety of food items due to their migration and may prey on food items from different trophic levels. Sea urchins are an important trophic link transferring the macrophyte carbon to RKC. However, P. camtschaticus may also directly consume plant residues. Despite generally similar calculated trophic levels of decapod species, our isotopic data and literature data on the food composition of Paralithodes camtschaticus in the Barents Sea do not indicate significant RKC's competition with, and predation on, native species of crabs.