Major depressive disorder (MDD) is commonly treated with selective serotonin reuptake inhibitors (SSRIs). SSRIs inhibit the serotonin transporter (5-HTT), but the downstream antidepressant mechanism of action of these drugs is poorly understood. The serotonin 1B (5-HT1B) receptor is functionally linked to 5-HTT and 5-HT1B receptor binding and 5-HT1B receptor mRNA is reduced in the raphe nuclei after SSRI administration in primates and rodents, respectively. The effect of SSRI treatment on 5-HT1B receptor binding in patients with MDD has not been examined previously. This positron emission tomography (PET) study aimed to quantify brain 5-HT1B receptor binding changes in vivo after SSRI treatment for MDD in relation to treatment effect. Eight unmedicated patients with moderate to severe MDD underwent PET with the 5-HT1B receptor radioligand [11C]AZ10419369 before and after 3 to 4 weeks of treatment with the SSRI escitalopram 10mg daily. Depression severity was assessed at time of PET and after 6 to 7 weeks of treatment with the Montgomery-Åsberg Depression Rating Scale. We observed a significant reduction in [11C]AZ10419369 binding in a dorsal brainstem (DBS) region containing the median and dorsal raphe nuclei after escitalopram treatment (P = .036). Change in DBS [11C]AZ10419369 binding correlated with Montgomery-Åsberg Depression Rating Scale reduction after 3-4 (r = 0.78, P = .021) and 6-7 (r = 0.94, P < .001) weeks' treatment. Our findings align with the previously reported reduction of 5-HT1B receptor binding in the raphe nuclei after SSRI administration and support future studies testing change in DBS 5-HT1B receptor binding as an SSRI treatment response marker.
Read full abstract