In this article, we identify certain instances of bent functions, constructed using the so-called Pτ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P_\ au $$\\end{document} property, that are provably outside the completed Maiorana–McFarland (MM#\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal{M}\\mathcal{M}}^\\#$$\\end{document}) class. This also partially answers an open problem in posed by Kan et al. (IEEE Trans Inf Theory, https://doi.org/10.1109/TIT.2022.3140180, 2022). We show that this design framework (using the Pτ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P_\ au $$\\end{document} property), can provide instances of bent functions that are outside the known classes of bent functions, including the classes MM#\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal{M}\\mathcal{M}}^\\#$$\\end{document}, C,D\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal {C}}},{{\\mathcal {D}}}$$\\end{document} and D0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal {D}}}_0$$\\end{document}, where the latter three were introduced by Carlet in the early nineties. We provide two generic methods for identifying such instances, where most notably one of these methods uses permutations that may admit linear structures. For the first time, a set of sufficient conditions for the functions of the form h(y,z)=Tr(yπ(z))+G1(Tr1m(α1y),…,Tr1m(αky))G2(Tr1m(βk+1z),…,Tr1m(βτz))+G3(Tr1m(α1y),…,Tr1m(αky))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$h(y,z)=Tr(y\\pi (z)) + G_1(Tr_1^m(\\alpha _1y),\\ldots ,Tr_1^m(\\alpha _ky))G_2(Tr_1^m(\\beta _{k+1}z),\\ldots ,Tr_1^m(\\beta _{\ au }z))+ G_3(Tr_1^m(\\alpha _1y),\\ldots ,Tr_1^m(\\alpha _ky))$$\\end{document} to be bent and outside MM#\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal{M}\\mathcal{M}}^\\#$$\\end{document} is specified without a strong assumption that the components of the permutation π\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pi $$\\end{document} do not admit linear structures.