Recursive neural networks and transformers have recently become dominant in hyperspectral (HS) image classification due to their ability to capture long-range dependencies in spectral sequences. Despite the success of these sequential architectures, mainstream deep learning methods primarily handle two-dimensional structured data. However, challenges such as the curse of dimensionality, spectral variability, and confounding factors in hyperspectral remote sensing images limit their effectiveness, especially in remote sensing applications. To address this issue, this paper proposes a novel land cover classification algorithm that integrates random forests with a spectral transformer network structure (RS-Net). Firstly, this paper presents a combination of the Gramian Angular Field (GASF) and Gramian Angular Difference Field (GADF) algorithms, which effectively maps the multidimensional time series constructed for each pixel onto two-dimensional image features, enabling precise extraction and recognition in the backend network algorithms and improving the classification accuracy of land cover types. Secondly, to capture the relationships between features at different scales, this paper proposes a SpectralFormer network architecture using the Context and Structure Encoding (CASE) module to effectively learn dependencies between channels. This architecture enhances important features and suppresses unimportant ones, thereby addressing the semantic gap and improving the recognition capability of land cover features. Finally, the final prediction results are determined by a voting mechanism from the Random Forest algorithm, which synthesizes predictions from multiple decision trees to enhance classification stability and accuracy. To better compare the performance of RS-Net, this paper conducted extensive experiments on three benchmark HS datasets obtained from satellite and airborne imagers, comparing various classic neural network models. Surprisingly, the RS-Net algorithm achieves high performance and efficiency, offering a new and effective tool for land cover classification.