Developing efficient and economical technologies for drinking water disinfection remains a challenge. We synthesized Ag/AgBr/LDH doped with various silver mass concentrations and explored its ability to inactivate E. coli under visible light irradiation (λ ≥ 400 nm). Our results indicated a total inactivation of E. coli (107 CFU·mL−1) within 80 min using 2 % Ag/AgBr/LDH in a laboratory-scale test. The method was evaluated for disinfecting three effluent samples collected from one drinking water treatment plant, covering representative water treatment processes. After five consecutive runs, the inactivation efficiency decreased slightly to 89 % in CFU·mL−1, indicating that the photocatalysts had excellent stability and reusability. The mechanisms were analyzed by combining chemical and biological methods. It was verified that singlet oxygen (1O2), hydrogen peroxide (H2O2), and photo-generated electrons (e−) were significant contributors to the inactivation process. Scanning electron microscopy images analysis showed the disruption of the membrane integrity of E. coli by photocatalytic oxidation. Internal component leakage and reduced enzyme activity were also observed in terms of K+ leakage, β-galactosidase activity, and antioxidant enzyme activity. The results by the transcriptomic analysis implied that Ag/AgBr/LDH regulating the oxidative stress response and cell membrane damage related genes was the main inactivation mechanism.
Read full abstract