We investigated the active tectonics and earthquake potential of the eastern Siena Basin, a slowly deforming portion of southern Tuscany in the inner Northern Apennines. This region hosts several historical settlements and valuable cultural heritage, but also frequent background seismicity and rare damaging earthquakes in the Mw range 5.0–6.2. We describe in detail an active, capable, and seismogenic fault system that we identified in the eastern Siena Basin, a few kilometers south-east of the city of Siena, thanks to the presence of an active quarry (Cava Capanni) that exploits travertines of Middle Pleistocene-Holocene age. Travertines are unique rock masses that may preserve living evidence of active and seismogenic faulting, thus providing remarkable seismotectonic insight. The active fault system consists of at least two segments rupturing travertines younger than 45 ka, with a cumulative vertical displacement of 111 cm, and an estimated minimum slip rate of 0.02–0.03 mm/y. We maintain that this displacement is the result of at least three coseismic movements accompanied by clastic dykes injected within the fault damage zone due to liquefaction phenomena. The fault system is seen to extend east of the quarry, affecting Pliocene and Mesozoic deposits.The Cava Capanni fault system is evidence of a poorly understood but potentially seismogenic tectonic mechanism of regional extent. Its orientation and kinematics are compatible with the activity of faults that are oriented obliquely or orthogonally to the main chain axis, in contrast with the setting of the axial and outer zone of the Northern Apennines, where extension and compression are accommodated by Apennines-parallel faults.
Read full abstract