Magnetized edge states of nanoribbon systems open a new path for designing functional spintronic devices. Here, we introduce a general mechanism for electrically generating nonzero net magnetization in antiferromagnetic (AFM) semiconducting nanoribbons. In the proposed spin configuration, in which the empty and occupied edge states of one side close to the Fermi energy are in the same spin channel, the Zeeman-type spin splitting between the states of opposite edges arising from the electric field allow the system to be tuned from the AFM semiconducting phase to the ferromagnetic (FM) metallic phase, yielding nonzero net magnetization. Our ab initio calculations show that this strategy is realizable in the example of the FePSe3 nanoribbon, in which self-passivation-driven reconstruction at the Se termination edge gives rise to the key spin configuration. Moreover, we demonstrate that an electric field could trigger a series of electronic phase transitions among AFM semiconductor, AFM half-metal, and FM metal phases, based on which we were able to design an electronically controllable versatile spintronics device.
Read full abstract