To develop a novel imaging sequence that independently acquires water and fat images while being inherently insensitive to motion. The new sequence, termed spectrally selective and interleaved water imaging and fat imaging (siWIFI), uses a narrow bandwidth RF pulse for selective excitation of water and fat separately. The interleaved acquisition method ensures that the obtained water and fat images are inherently coregistered. A radial sampling strategy further reduces motion-induced artifacts. Phantoms with lipid concentrations ranging from 0% to 50% were scanned to measure fat fraction. Moreover, healthy volunteers were scanned to assess the in vivo feasibility of fat fraction measurement at the hip, knee, and liver. In vivo fat fraction measurements were compared with those from vendor-provided iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) scans. Furthermore, a magnetization transfer (MT) preparation module was incorporated to demonstrate the feasibility of simultaneous measurement of fat fraction and MT ratio utilizing the siWIFI framework. The phantom fat fractions measured by siWIFI showed excellent correlation with lipid concentrations (R2 = 0.9995, p < 0.0001). In vivo studies demonstrated that the fat fractions obtained from siWIFI were comparable to those from IDEAL. Additionally, siWIFI demonstrates reduced motion artifacts from pulsatile flow in knee imaging compared to IDEAL scans and exhibits less sensitivity to respiratory motion in liver imaging compared to IDEAL scans without breath-hold. The knee imaging study demonstrated that MT-prepared siWIFI is capable of generating fat fraction and MT ratio maps simultaneously. The proposed siWIFI sequence allows selective water-fat imaging and quantification with reduced motion artifacts.
Read full abstract