A Brownian shell model describing the random rotational motion of a spherical shell of uniform particle density is presented and validated by molecular dynamics simulations. The model is applied to proton spin rotation in aqueous paramagnetic ion complexes to yield an expression for the Larmor-frequency-dependent nuclear magnetic resonance spin-lattice relaxation rate T_{1}^{-1}(ω) describing the dipolar coupling of the nuclear spin of the proton with the electronic spin of the ion. The Brownian shell model provides a significant enhancement to existing particle-particle dipolar models without added complexity, allowing fits to experimental T_{1}^{-1}(ω) dispersion curves without arbitrary scaling parameters. The model is successfully applied to measurements of T_{1}^{-1}(ω) from aqueous manganese(II), iron(III), and copper(II) systems where the scalar coupling contribution is known to be small. Appropriate combinations of Brownian shell and translational diffusion models, representing the inner and outer sphere relaxation contributions, respectively, are shown to provide excellent fits. Quantitative fits are obtained to the full dispersion curve of each aquoion with just five fit parameters, with the distance and time parameters each taking a physically justifiable numerical value.
Read full abstract