This work describes the synthesis, characterization, and photocatalytic evaluation of a polypyrrole-reinforced zinc-nickel mixed metal ferrite (PPy@ Zn0.5Ni0.5Fe2O4) nanohybrid. A facile hydrothermal process is employed to synthesize the nanostructured zinc-nickel mixed metal ferrite (ZNF), and in situ oxidative polymerization is utilized to create the PPy nanohybrid. In this nanohybrid, PPy plays multiple roles: preventing charge recombination, reducing photocorrosion, mitigating particle aggregation in ZNF, and enhancing charge transfer and visible light absorption. The combined electron-capturing ability, intrinsic conductivity, and extensive π-conjugation of PPy, along with the magnetic nature of ZNF, render the PPy@ZNF catalyst highly efficient. The results of photoluminescence, impedance, and UV/Vis analysis confirm that PPy plays a critical role in enhancing photocatalytic performance by facilitating charge transfer and extending visible-light absorption. In practical environmental applications, the PPy@ZNF nanohybrid demonstrated superior photocatalytic activity compared to ZNF alone, degrading 98.5 % of malachite green dye under W-lamp light within 80 min, with a rate constant of 0.031 min−1. Scavenger and cyclic experiments identified the active species involved in dye degradation and assessed the reusability of the nanohybrid. Extensive testing revealed the optimal conditions for photocatalytic efficiency; the considered variables included light intensity, catalyst dose, dye concentration, temperature, irradiation time, and pH. These findings suggest that the PPy-reinforced ZNF nanohybrid offers cost-effectiveness, magnetic recoverability, structural stability, and high efficacy as a visible light-driven catalyst, making it a promising candidate for diverse environmental remediation applications.
Read full abstract