This article concentrates on the steady-state thermal characteristics of the Axial-Radial Flux-Type Permanent Magnet Synchronous Motor (ARFTPMSM). Firstly, the three-dimensional mathematical models for electromagnetic calculation and analyses are established, and the machine loss, including the stator loss, armature winding loss, rotor loss, and axial structure loss is calculated by using time-step Finite Element Method (FEM). Then, the loss distribution is assigned as the heat source for the thermal calculation. Secondly, the mathematical model for thermal calculation is also established. The assumptions and the boundary conditions are proposed to simplify the calculation and to improve convergence. Thirdly, the three-dimensional electromagnetic and thermal calculations of the machine, of which the armature winding and axial field winding are developed by using copper wires, are solved, from which the temperature distributions of the machine components are obtained. The experiments are carried out on the prototype with copper wires to validate the accuracy of the established models. Then, the temperature distributions of machine components under different Axial Magnetic Motive Force (AMMF) are investigated. Since the machine is finally developing by using HTS wires, the temperature distributions of machine developed by utilizing High Temperature Superconducting (HTS) wires, are also studied. The temperature distribution differences of the machine developed by using copper wires and HTS wires are drawn. All of these above will provide a helpful reference for the thermal calculation of the ARFTPMSM, as well as the design of the HTS coils and the cryogenic cooling system.
Read full abstract