ABSTRACT The transformation of local clay material of Cameroonian origin into magnetic zeolite (Fe@Zeo-4A) for the degradation of acid-blue 90 in solution was investigate herein. The insertion of magnetic iron oxide particles into the zeolitic framework of Zeo-4A was achieved via hydrothermal synthesis. FT-IR spectroscopy, XRD and SEM confirmed the transformation of the clay into zeolite while EDX analysis and elemental mappings confirmed the presence of iron in the magnetic zeolite. Fe@Zeo-4A was strongly attracted to an external magnetic field. N2 adsorption-desorption studies revealed a considerable decrease in specific surface area and pore volume from the zeolite to the magnetic zeolite, suggesting the occupation of the pores of the zeolite by magnetite. The central composite design of the response surface methodology was used as optimisation approach for four parameters affecting the efficiency of degradation: solution pH, H2O2 concentration, initial dye concentration and time of stirring. ANOVA results revealed good correlation between the experimental and predicted results as well as the suitability of the linear regression model for describing the dye degradation process. An adjusted correlation coefficient of 85.17% was obtained for the dye degradation model. An optimal degradation percentage of 95.2% was obtained experimentally under optimal conditions of 7.6 for pH, 20 mg/L for dye concentration, 15.0 mol/L for [H2O2] and 15 min for time, in close agreement with a theoretical response of 96.6% predicted by the model. The magnetic zeolite was found to exhibit good stability over a wide pH range and lost only about 18% of its catalytic efficiency after five cycles of degradation experiments. Therefore, the novel magnetic zeolite-based material is an efficient Fenton catalyst for treating dye-contaminated wastewater.
Read full abstract