ABSTRACT The use of machine-learning based algorithms on a large-scale nondestructive evaluation (NDE) data considerably advances the NDE techniques toward complete industrial automation. In this article, simultaneous feature selection and feature weighting are carried out on the magnetic Barkhausen emission (MBE) dataset to demonstrate the significance of optimization in NDE data. Antlion optimization is employed as a searching method to determine the optimum feature set that will maximize the classification performance. The proposed framework is validated for different magnetization frequencies separately and found to be frequency independent. The framework resulted in the selection of four significant features extracted from the MBE response thereby reducing the computational effort and improving the accuracy to 98.4% for AdaBoost classifier. The developed machine learning methodology is a potential strategy for processing industrial sensory data since material testing, property prediction, and categorization are frequent tasks in manufacturing and production engineering industries. Further, this research demonstrated the necessity of embedded intelligence in automation of NDE toward Industrial Revolution 4.0.