The formation of magnesium chloride-hydroxide salts (magnesium hydroxychlorides) has implications for many geochemical processes and technical applications. For this reason, a thermodynamic database for evaluating the Mg(OH)2–MgCl2–H2O ternary system from 0 °C–120 °C has been developed based on extensive experimental solubility data. Internally consistent sets of standard thermodynamic parameters (ΔGf°, ΔHf°, S°, and CP) were derived for several solid phases: 3 Mg(OH)2:MgCl2:8H2O, 9 Mg(OH)2:MgCl2:4H2O, 2 Mg(OH)2:MgCl2:4H2O, 2 Mg(OH)2:MgCl2: 2H2O(s), brucite (Mg(OH)2), bischofite (MgCl2:6H2O), and MgCl2:4H2O. First, estimated values for the thermodynamic parameters were derived using a component addition method. These parameters were combined with standard thermodynamic data for Mg2+(aq) consistent with CODATA (Cox et al., 1989) to generate temperature-dependent Gibbs energies for the dissolution reactions of the solid phases. These data, in combination with values for MgOH+(aq) updated to be consistent with Mg2+-CODATA, were used to compute equilibrium constants and incorporated into a Pitzer thermodynamic database for concentrated electrolyte solutions. Phase solubility diagrams were constructed as a function of temperature and magnesium chloride concentration for comparisons with available experimental data. To improve the fits to the experimental data, reaction equilibrium constants for the Mg-bearing mineral phases, the binary Pitzer parameters for the MgOH+ — Cl− interaction, and the temperature-dependent coefficients for those Pitzer parameters were constrained by experimental phase boundaries and to match phase solubilities. These parameter adjustments resulted in an updated set of standard thermodynamic data and associated temperature-dependent functions. The resulting database has direct applications to investigations of magnesia cement formation and leaching, chemical barrier interactions related to disposition of heat-generating nuclear waste, and evaluation of magnesium-rich salt and brine stabilities at elevated temperatures.
Read full abstract