We experimentally disentangle the contributions of different quantum paths in high-order harmonic generation (HHG) from the spectrally and spatially resolved harmonic spectra. By adjusting the laser intensity and focusing position, we simultaneously observe the spectrum splitting, frequency shift and intensity-dependent modulation of harmonic yields both for the short and long paths. Based on the simulations, we discriminate the physical mechanisms of the intensity-dependent modulation of HHG due to the quantum path interference and macroscopic interference effects. Moreover, it is shown that the atomic dipole phases of different quantum paths are encoded in the frequency shift. In turn, it enables us to retrieve the atomic dipole phases and the temporal chirps of different quantum paths from the measured harmonic spectra. This result gives an informative mapping of spatiotemporal and spectral features of quantum paths in HHG.
Read full abstract