It is crucial to use simple methods to prepare stable polymeric micelles with multiple functions for cancer treatment. Herein, via a "bottom-up" strategy, we reported the fabrication of β-CD-(PEOSMA-PCPTMA-PPEGMA)21 (βPECP) unimolecular micelles that could simultaneously treat tumors and bacteria with chemotherapy and photodynamic therapy (PDT). The unimolecular micelles consisted of a 21-arm β-cyclodextrin (β-CD) core as a macromolecular initiator, photosensitizer eosin Y (EOS-Y) monomer EOSMA, anticancer drug camptothecin (CPT) monomer, and a hydrophilic shell PEGMA. Camptothecin monomer (CPTMA) could achieve controlled release of the CPT due to the presence of responsively broken disulfide bonds. PEGMA enhanced the biocompatibility of micelles as a hydrophilic shell. Two βPECP with different lengths were synthesized by modulating reaction conditions and the proportion of monomers, which both were self-assembled to unimolecular micelles in water. βPECP unimolecular micelles with higher EOS-Y/CPT content exhibited more excellent 1O2 production, in vitro drug release efficiency, higher cytotoxicity, and superior antibacterial activity. Also, we carried out simulations of the self-assembly and CPT release process of micelles, which agreed with the experiments. This nanosystem, which combines antimicrobial and antitumor functions, provides new ideas for bacteria-mediated tumor clinical chemoresistance.
Read full abstract