Block symmetric ciphers are one of the most important components of modern information security systems. At the same time, in addition to the structure of the applied block symmetric cipher, the cryptographic strength and performance of the information protection system is largely determined by the applied encryption mode. In addition to high performance and high-quality destruction of block statistics, modern encryption modes should also protect encrypted information from occurred or intentionally introduced errors. In this paper, we have developed an encryption mode with blocks skipping and using a pseudo-random key sequence generator, which allows checking the integrity of encrypted information with accurate detection of the place where an error was introduced. In this case, the error detection accuracy is determined by the adjustable parameter of the macroblock size and can be set depending on the level of importance of the protected information. The developed encryption mode is characterized by the following key advantages: reducing the number of required encryption operations by half, while providing a high level of cryptographic quality; more effective destruction of macroblock statistics due to the use of an additional generator of pseudo-random key sequences, the impossibility of propagation of the occurred (intentionally introduced) error outside the macroblock, as well as higher values of the number of protection levels due to the possibility of classifying the initial states of the applied generators of pseudo-random key sequences. As proposed in this paper, the mode of authenticated encryption with blocks skipping can be recommended for use on mobile platforms that are demanding both in terms of the quality and reliability of the protected information and are limited in terms of computing and power resources.
Read full abstract