ObjectiveTo use routine demographic and clinical data to develop an interpretable individual-level machine learning (ML) model to diagnose knee osteoarthritis (KOA) and to identify highly ranked features.MethodsIn this retrospective, population-based cohort study, anonymized questionnaire data was retrieved from the Wu Chuan KOA Study, Inner Mongolia, China. After feature selections, participants were divided in a 7:3 ratio into training and test sets. Class balancing was applied to the training set for data augmentation. Four ML classifiers were compared by cross-validation within the training set and their performance was further analyzed with an unseen test set. Classifications were evaluated using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, area under the curve(AUC), G-means, and F1 scores. The best model was explained using Shapley values to extract highly ranked features.ResultsA total of 1188 participants were investigated in this study, among whom 26.3% were diagnosed with KOA. Comparatively, XGBoost with Boruta exhibited the highest classification performance among the four models, with an AUC of 0.758, G-means of 0.800, and F1 scores of 0.703. The SHAP method reveals the top 17 features of KOA according to the importance ranking, and the average of the experience of joint pain was recognized as the most important features.ConclusionsOur study highlights the usefulness of machine learning in unveiling important factors that influence the diagnosis of KOA to guide new prevention strategies. Further work is needed to validate this approach.
Read full abstract