This paper proposes the Modulated Whale Optimization Algorithm(MWOA), an innovative metaheuristic algorithm derived from the classic WOA and tailored for bionics-inspired optimization. MWOA tackles common optimization problems like local optima and premature convergence using two key methods: shrinking encircling and spiral position updates. In essence, it prevents algorithms from settling for suboptimal solutions too soon, encouraging exploration of a broader solution space before converging, by incorporating cauchy variation and a perturbation term, MWOA achieve optimization over a wide search space. After that, comparisons were conducted between MWOA and seven recently proposed metaheuristics, utilizing the CEC2005 benchmark functions to assess MWOA's optimization performance. Moreover, the Wilcoxon rank sum test is used to verify the effectiveness of the proposed algorithm. Eventually, MWOA was juxtaposed with the BiLSTM classifier and six other meta-heuristics combined with the BiLSTM classifier. The aim was to affirm that MWOA-BiLSTM outperforms its counterparts, showcasing superior performance across crucial metrics such as accuracy, precision, recall, and F1-Score. The study results unequivocally demonstrate that MWOA showcases exceptional optimization capabilities, adeptly striking a harmonious balance between exploration and exploitation.
Read full abstract