Zika virus (ZIKV) is an emerging flavivirus associated with several neurological diseases such as Guillain-Barré syndrome in adults and microcephaly in newborn children. Its distribution and mode of transmission (via Aedes aegypti and Aedes albopictus mosquitoes) collectively cause ZIKV to be a serious concern for global health. High genetic homology of flaviviruses and shared ecology is a hurdle for accurate detection. Distinguishing infections caused by different viruses based on serological recognition can be misleading as many anti-flavivirus monoclonal antibodies (mAbs) discovered to date are highly cross-reactive, especially those against the envelope (E) protein. To provide more specific research tools, we produced ZIKV E directed hybridoma cell lines and characterized two highly ZIKV-specific mAb clones (mAbs A11 and A42) against several members of the Flavivirus genus. Epitope mapping of mAb A11 revealed glycan loop specificity in Domain I of the ZIKV E protein. The development of two highly specific mAbs targeting the surface fusion protein of ZIKV presents a significant advancement in research capabilities as these can be employed as essential tools to enhance our understanding of ZIKV identification on infected cells ex vivo or in culture.
Read full abstract