Cowpea (Vigna unguiculata (L.) Walp) is one of the major food legume crops grown extensively in arid and semi-arid regions of the world. The determinate habit of cowpea has many advantages over the indeterminate and is well adapted to modern farming systems. Mutation breeding is an active research area to develop the determinate habit of cowpea. The present study aimed to develop new determinate habit mutants with terminal flowering (TFL) in locally well-adapted genetic backgrounds. Consequently, the seeds of popular cowpea cv P152 were irradiated with doses of gamma rays (200, 250, and, 300 Gy), and the M1 populations were grown. The M2 populations were produced from the M1 progenies and selected determinate mutants (TFLCM-1 and TFLCM-2) from the M2 generation (200 Gy) were forwarded up to the M5 generation to characterize the mutants and simultaneously they were crossed with P152 to develop a MutMap population. In the M5 generation, determinate mutants (80–81 days) were characterized by evaluating the TFL growth habit, longer peduncles (30.75–31.45 cm), erect pods (160°- 200°), number of pods per cluster (4–5 nos.), and early maturity. Further, sequencing analysis of the VuTFL1 gene in the determinate mutants and MutMap population revealed a single nucleotide transversion (A-T at 1196 bp) in the fourth exon and asparagine (N) to tyrosine (Y) amino acid change at the 143rd position of phosphatidylethanolamine-binding protein (PEBP). Notably, the loss of function PEPB with a higher confidence level modification of anti-parallel beta-sheets and destabilization of the protein secondary structure was observed in the mutant lines. Quantitative real-time PCR (qRT-PCR) analysis showed that the VuTFL1 gene was downregulated at the flowering stage in TFL mutants. Collectively, the insights garnered from this study affirm the effectiveness of induced mutation in modifying the plant’s ideotype. The TFL mutants developed during this investigation have the potential to serve as a valuable resource for fostering determinate traits in future cowpea breeding programs and pave the way for mechanical harvesting.
Read full abstract