Antinuclear antibodies (ANAs) are crucial in diagnosing autoimmune diseases, mainly systemic lupus erythematosus (SLE). This study aimed to compare the performance of chemiluminescence assay (CLIA) and line immunoassay (LIA) in detecting ANAs in patients with autoimmune diseases, evaluate their diagnostic accuracy for SLE, and develop a novel diagnostic model using CLIA-detected antibodies for SLE. Specimens from patients with autoimmune diseases and physical examination specimens were collected to parallel detect specific antibodies. Individual antibodies' diagnostic performance and a model combining multiple antibodies were assessed. The findings provide valuable insights into improving the diagnosis of SLE through innovative approaches. To compare the performance of CLIA and LIA in detecting ANAs in patients with autoimmune diseases, assess their accuracy for SLE, and develop a novel diagnostic model using CLIA-detected antibodies for SLE. Specimens have been obtained from 270 patients with clinically diagnosed autoimmune disorders, as well as 130 physical examination specimens. After that, parallel detection of anti-double-stranded DNA (dsDNA) antibody, anti-histone (Histone) antibody, anti-nucleosome (Nuc) antibody, anti-Smith (Sm) antibody, anti-ribosomal P protein (Rib-P) antibody, anti-sicca syndrome A (Ro60) antibody, anti-sicca syndrome A (Ro52) antibody, anti-sicca syndrome (SSB) antibody, anti-centromere protein B (Cenp-B) antibody, anti-DNA topoisomerase 1 (Scl-70) antibody, anti-histidyl tRNA synthetase (Jo-1) antibody, and anti-mitochondrial M2 (AMA-M2) antibody was performed using CLIA and LIA. The detection rates, compliance rates, and diagnostic performance for SLE were compared between the two methodologies, followed by developing a novel diagnostic model for SLE. CLIA and LIA exhibited essentially comparable detection rates for anti-dsDNA antibody, anti-Histone antibody, anti-Nuc antibody, anti-Sm antibody, anti-Rib-P antibody, anti-Ro60 antibody, anti-Ro52 antibody, anti-SSB antibody, anti-Cenp-B antibody, anti-DNAScl-70 antibody, anti-Jo-1 antibody and anti-AMA-M2 antibody (P > 0.05). The two methods displayed identical results for the detection of anti-dsDNA antibody, anti-Histone antibody, anti-Nuc antibody, anti-Sm antibody, anti-Ro60 antibody, anti-Ro52 antibody, anti-SSB antibody, anti-Cenp-B antibody, anti-Scl-70 antibody, and anti-AMA-M2 antibody (Kappa > 0.7, P < 0.05), but showed a moderate agreement for the detection of anti-Rib-P antibody and anti-Jo-1 antibody (Kappa = 0.671 and 0.665; P < 0.05). In addition, the diagnostic performance of these antibodies detected by both methods was similar for SLE. The diagnostic model's area under the curve values, sensitivity, and specificity, including an anti-dsDNA antibody and an anti-Ro60 antibody detected by CLIA, were 0.997, 0.962, and 0.978, respectively. These values were higher than the diagnostic performance of individual antibodies. CLIA and LIA demonstrated excellent overall consistency in detecting ANA profiles. A diagnostic model based on CLIA-detected antibodies can successfully contribute to developing a novel technique for detecting SLE.