Recently developed Nickel-Titanium (NiTi) instruments with practical changes have resulted in safer instrumentation. In addition, topographical features on the file surface are a contributing factor to clinical durability. Therefore, this study aimed to investigate both the cyclic fatigue resistance and the roughness change of MTwo and Rotate instruments (VDW, Munich, Germany). Each instrument (n = 6/each group) was scanned with an atomic force microscopy prior to and after instrumentation. In addition, cyclic fatigue testing was conducted for each instrument (n = 11/each group) with stainless-steel blocks, including 45°-60°-90° degrees of curvature milled to the instruments' size. The roughness parameters increased for both systems after instrumentation (p<0.05). Both systems presented an increased roughness following instrumentation (p<0.05). The cyclic fatigue resistance was lowest at 90° for both systems (p<0.05), whereas the Rotate files presented a higher resistance than that of the Mtwo files (p<0.05). Compared to the Mtwo files, Rotate files presented better resistance, while the resistance decreased as the curvature increased.
Read full abstract