Existing reverse osmosis (RO) membranes often feature a polyamide rejection layer fabricated by interfacial polymerization (IP) between m-phenylenediamine (MPD) and trimesoyl chloride. However, polyamide RO membrane formation is limited by the poorly soluble polar MPD in the nonpolar organic solvent (e.g., hexane). Herein, we developed a dual organic solvent system to increase MPD solubility via introducing a polar solvent of dioxane into the hexane as inspired by the classical "like dissolves like" theory and thus promoting the IP reaction efficiency. Consequently, the optimal RO membrane exhibited a superior desalination performance with a rejection of 99.2% for 35,000 ppm of NaCl, simultaneous with a high water permeance of 3.1 L m-2 h-1 bar-1. Meanwhile, it had a boron rejection of 90.3% that far exceeds commercial RO membranes. These findings demonstrate that a dual organic solvent IP system can offer a facile yet effective strategy for scalable fabrication of high-performance RO membranes.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
540 Articles
Published in last 50 years
Articles published on M-phenylenediamine
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
543 Search results
Sort by Recency