Protein kinase dysregulation was strongly linked to cancer pathogenesis. Moreover, histone alterations were found to be among the most important post-translational modifications that could contribute to cancer growth and development. In this context, haspin, an atypical serine/threonine kinase, phosphorylates histone H3 at threonine-3 and is notably overexpressed in various common cancer types. Herein, we report novel 5-(4-pyridinyl)indazole derivatives as potent and selective haspin inhibitors. Amide coupling at N1 of the indazole ring with m-hydroxyphenyl acetic acid yielded compound 21 with an IC50 value of 78 nM against haspin. This compound showed a meaningful selectivity over 15 of the most common off-targets, including Clk 1–3 and Dyrk1A, 1B, and 2. The most potent haspin inhibitors 5 and 21 effectively inhibited the growth of the NCI-60 cancer cell lines, further emphasizing the success of our scaffold as a new selective lead for the development of anti-cancer therapeutic agents.
Read full abstract