Maximum likelihood sequence estimation (MLSE) is the optimal signal sequence detection that can remove the inter-symbol interference (ISI). However, we find that the MLSE causes burst consecutive errors alternating between +2 and -2 in M-ary pulse amplitude modulation (PAM-M) IM/DD systems with large ISI. In this paper, we propose to use precoding to suppress the burst consecutive errors resulted from MLSE. A 2 M modulo operation is employed to guarantee that the probability distribution as well as the peak-to-average power ratio (PAPR) of encoded signal remain unchanged. After the receiver-side MLSE, the decoding process that involves adding the current MLSE output to the previous one and applying a 2 M modulo is implemented to break the burst consecutive errors. We conduct experiments to transmit 112/150-Gb/s PAM-4 or beyond 200-Gb/s PAM-8 signals at C-band to investigate the performance of the proposed MLSE integrated with precoding. The results show that the precoding can break burst errors effectively. For 201-Gb/s PAM-8 signal transmission, the precoding MLSE can achieve 1.4-dB receiver sensitivity gain and reduce the maximum length of burst consecutive errors from 16 to 3.
Read full abstract