The CD36/FAT scavenger receptor/fatty acids transporter regulates cellular lipid accumulation important for inflammation, atherosclerosis, lipotoxicity, and initiation of cellular senescence. Here we compared the regulatory effects of the vitamin E analogs alpha-tocopherol (αT), alpha-tocopheryl phosphate (αTP), and αTP/βCD (a nanocarrier complex between αTP and β-cyclodextrin [βCD]) and investigated their regulatory effects on lipid accumulation, phagocytosis, and senescence in THP-1 monocytes and macrophages. Both, αTP and αTP/βCD inhibited CD36 surface exposition stronger than αT leading to more pronounced CD36-mediated events such as inhibition of DiI-labeled oxLDL uptake, phagocytosis of fluorescent Staphylococcus aureus bioparticles, and cell proliferation. When compared to βCD, the complex of αTP/βCD extracted cholesterol from cellular membranes with higher efficiency and was associated with the delivery of αTP to the cells. Interestingly, both, αTP and more so αTP/βCD inhibited lysosomal senescence-associated beta-galactosidase (SA-β-gal) activity and increased lysosomal pH, suggesting CD36-mediated uptake into the endo-lysosomal phagocytic compartment. Accordingly, the observed pH increase was more pronounced with αTP/βCD in macrophages whereas no significant increase occurred with αT, alpha-tocopheryl acetate (αTA) or βCD. In contrast to αT and αTA, the αTP molecule is di-anionic at neutral pH, but upon moving into the acidic endo-lysosomal compartment becomes protonated and thus is acting as a base. Moreover, it is expected to be retained in lysosomes since it still carries one negative charge, similar to lysosomotropic drugs. Thus, treatment with αTP or αTP/βCD and/or inhibition of conversion of αTP to αT as it occurs in aged cells may counteract CD36-mediated overlapping inflammatory, senescent, and atherosclerotic events.
Read full abstract