Background: The influenza virus has been responsible for contagious respiratory diseases with high mortality rates [1]. Some drugs have been used to treat human influenza. However, these drugs cause many common side effects and induce the appearance of resistant viral strains [2]. The impact caused by the influenza virus has motivated the development of new approaches for the prevention and control of influenza [3]. Therefore, a new homeopathic medicine was developed using, as a starting point, the infectious influenza virus [4]. This belongs to a group called living nosodes [5]. However, its mutagenic and genotoxic potentials, especially when used in low dilutions, has not yet been evaluated and it is important because this biotherapic is prepared from living microorganisms. Different methods can be used to detect mutagenic and genotoxicic effects.
 
 Aims: This study aims to evaluate the genotoxic and mutagenic potentials of influenza A living nosode at different homeopathic potencies.
 
 Methodology: 1 ml of purified viral suspension was diluted in 9 ml of sterile distilled water. This sample was submitted to 100 mechanical succussions (approximately 3 Hz), using Autic® Brazilian machine, originating the first dilution, named decimal (1x). 1 ml of this solution was diluted in 9 ml of solvent and was submitted to 100 sucussions, generating biotherapic 2x. This procedure was successively repeated, according to Brazilian Homeopathic Pharmacopoeia, to obtain the biotherapic 30x [6]. By the same technique, water vehicle was prepared until 30x potency to be used as control. All samples were prepared in sterile and under aseptic conditions, using laminar flow cabinet, class II, and were stored in the refrigerator (8ºC). The samples 1x, 6x, 12x, 18x, 24x and 30x and water 30x (vehicle control) were analysed by: the Inductest, which assesses the ability of physical or chemical agents to promote lysogenic induction as a reflection of damage in DNA molecules in lysogenic bacteria, and the Ames test, which uses indicator strains of Salmonella typhimurium, sensitive to substances that can induce different types of mutation.
 
 Results: The Inductest showed no decrease in the survival fraction of the bacteria used, and no increase in the formation of lysogenic induction, in any tested potency. The same profile was obtained after the Ames test, with similar results to negative control.
 
 Conclusion: We can conclude that this living nosode compounded with Influenza A virus is not able to induce DNA damage in prokaryotic cells. This result permits us to conclude that patients who use this medicine have no side effects related to mutagenesis and genotoxicity.
Read full abstract