This study examinedvitexin's effect on sepsis-induced acute lung injury. We used network pharmacology and in vivo and in vitro experiments were performed to elucidate vitexin's role in preventing pyroptosis and regulating small nucleolar RNA host gene 1 (SNHG1)/DNA methyltransferase 1 (DNMT1)/microRNA-495 (miR-495 axis. We developed an acute lung injury model using C57BL/6 mice and MLE-12 cells. Through a combination of network pharmacology and in vitro screening, vitexin was identified as the most promising anti-inflammatory compound. Multiple techniques such as western blotting, real-time PCR, Hematoxylin and eosin staining, immunohistochemistry, andTUNEL assay were used. Additionally, immunofluorescence, DCFDA and TMRE staining, flow cytometry, methylation-specific PCR, and gene transfection techniques were performed to elucidate vitexin's potential targets and underlying mechanisms. Vitexin treatment significantly reduced lung damage, neutrophil infiltration, and inflammation while improving tight junction integrity. In LPS-treated RAW264.7 macrophages and a septic mouse BALF-induced MLE-12 cell injury model, vitexin demonstrated anti-inflammatory effects, promoted M2 macrophage polarization, and enhanced regenerative markers. It also decreased oxidative stress, mitigated apoptosis and pyroptosis, and improved mitochondrial function. Our research uncovered a novel epigenetic regulatory mechanism involving lncRNA SNHG1, DNMT1, and miR-495. Vitexin's ability to reduce inflammation, counteract oxidative stress, and modulate epigenetic processes. These findings underscore the promising role of vitexin as a treatment for ALI generated by sepsis. The SNHG1/miR-495 axis, which has been identified, represents a new target for future therapies in acute lung injury.
Read full abstract