In hypoxic and pseudohypoxic rodent models of pulmonary hypertension (PH), hypoxia-inducible factor (HIF) inhibition attenuates disease initiation. However, HIF activation alone, due to genetic alterations or use of inhibitors of prolyl hydroxylase domain (PHD) enzymes, has not been definitively shown to cause PH in humans, indicating the involvement of other mechanisms. Given the association between endothelial cell dysfunction and PH, the effects of pseudohypoxia and its underlying pathways were investigated in primary human lung endothelial cells. PHD2 silencing or inhibition, while activating HIF2α, induced apoptosis-resistance and IFN/STAT activation in endothelial cells, independent of HIF signaling. Mechanistically, PHD2 deficiency activated AKT and ERK, inhibited JNK, and reduced AIP1 (ASK1-interacting protein 1), all independent of HIF2α. Like PHD2, AIP1 silencing affected these same kinase pathways and produced a similar dysfunctional endothelial cell phenotype, which was partially reversed by AKT inhibition. Consistent with these in vitro findings, AIP1 protein levels in lung endothelial cells were decreased in Tie2-Cre/Phd2 knockout mice compared with wild-type controls. Lung vascular endothelial cells from patients with pulmonary arterial hypertension (PAH) showed IFN/STAT activation. Lung tissue from both SU5416/hypoxia PAH rats and patients with PAH all showed AKT activation and dysregulated AIP1 expression. In conclusion, PHD2 deficiency in lung vascular endothelial cells drives an apoptosis-resistant and inflammatory phenotype, mediated by AKT activation and AIP1 loss independent of HIF signaling. Targeting these pathways, including PHD2, AKT, and AIP1, holds the potential for developing new treatments for endothelial dysfunction in PH.NEW & NOTEWORTHY HIF activation alone does not conclusively lead to human PH, suggesting that HIF-independent signaling may also contribute to hypoxia-induced PH. This study demonstrated that PHD2 silencing-induced pseudohypoxia in human lung endothelial cells suppresses apoptosis and activates STAT, effects that persist despite HIF2α inhibition or knockdown and are attributed to AKT and ERK activation, JNK inhibition, and AIP1 loss. These findings align with observations in lung endothelial cells and tissues from PAH rodent models and patients.