To investigate the dynamic characteristics of proton exchange membrane fuel cells (PEMFCs) on maritime vessels, a lumped-parameter model for the PEMFC systems was developed based on a hybrid vessel propulsion systems model. Simulations and analyses of the dynamic characteristics of PEMFCs were conducted under typical sailing conditions. The results reveal a noticeable hysteresis in the operating temperature of PEMFC stacks during vessel voyages, with a delay of about 25 s, leading to significant overvoltage in activation, ohmic, and concentration differences. Significant variations in vessel loads can cause large fluctuations in the component gas pressures in the cathode and anode flow paths within 16.6–19.8 kPa and 78.57–93.06 kPa, respectively. A comparison of different humidification levels for cathode and anode gases demonstrates that, at the same moment, as the humidification of cathode and anode gases increases from 20 % to 100 %, the water content in the proton membrane increases from 2.29 to 13.47, the ohmic impedance decreases from 1.35 mΩ/cm2 to 0.174 mΩ/cm2, and the overshoot of the fuel cell voltage decreases. The output delay decreases from 25 s to 8 s, enhancing overall fuel cell performance. These findings are significant for optimizing the design, performance, and real-time control of marine PEMFC systems.
Read full abstract