ABSTRACT This paper investigated four different S-CO2 Brayton cycle layouts for nuclear energy conversion: simple recuperation cycle (SR), recompression cycle (RC), re-heating cycle (RH), and intercooling cycle (IC). We compared these S-CO2 Brayton cycle schemes for nuclear energy conversion using the G1+TOPSIS multi-index evaluation method. The evaluation results of different schemes based on their safety, thermodynamics, techno-economic and compactness are given. The results show that for Generation IV reactors with the same designed thermal power, the thermodynamic performance of the S-CO2 system is better for higher reactor exit temperature. Among the schemes, the gas-cooled fast reactor (GFR)+RC scheme has the highest thermal efficiency (47.4%) and exergy efficiency (56.48%). The GFR+IC scheme has the lowest specific cost (1861.3$/W) and the internal rate of return (24.8%). The re-heating cycle (RH) has worse indexes, but it requires the lowest initial investment cost. The intercooling cycle (IC) has the lowest levelized cost of electricity (0.0134 $/KW•h) coupling to GFR. Considering all indexes of four aspects, the reactor’s performance ranking is MSR>LFR>SFR>GFR, and the S-CO2 system's performance ranking is RC>SR>IC>RH. For Generation IV nuclear energy conversion technologies, the molten salt reactor (MSR)+RC scheme should be given priority, while GFR+RH schemes should be carefully considered.
Read full abstract