Out of the many major breakthroughs that the hydrogen-exchange reaction has led to, electronic nonadiabatic effects that are mainly due to the geometric phase has intrigued many. In this work we investigate such effects in the state-to-state dynamics of the H + H2 (v = 3, 4, j = 0) → H2 (v', j') + H reaction with a vibrationally excited reagent at energies corresponding to thermal conditions. The dynamical calculations are performed by a time-dependent quantum mechanical method both on the lower adiabatic potential energy surface (PES) and also using a two-states coupled diabatic theoretical model to explicitly include all the nonadiabatic couplings present in the 1E' ground electronic manifold of the H3 system. The nonadiabatic couplings are considered here up to the quadratic term; however, the effect of the latter on the reaction dynamics is found to be very small. Adiabatic population analysis showed a minimal participation of the upper adiabatic surface even for the vibrationally excited reagent. A strong nonadiabatic effect appears in the state-to-state reaction probabilities and differential cross sections (DCSs). This effect is manifested as "out-of-phase" oscillations in the DCSs between the results of the uncoupled and coupled surface situations. The oscillations persist as a function of both scattering angle and collision energy in both the backward and forward scattering regions. The origins of these oscillations are examined in detail. The oscillations that appear in the forward direction are found to be different from those due to glory scattering, where the latter showed a negligibly small nonadiabatic effect. The nonadiabatic effects are reduced to a large extent when summed over all product quantum states, in addition to the cancellation due to integration over the scattering angle and partial wave summation.
Read full abstract