Relationship between the activity for photocatalytic H2O overall splitting (HOS) and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram, and specially the d10 electronic configuration in valley bottom exhibits inert activity, which seriously fetters the development of catalytic materials with great potentials. Herein, In d10 electronic configuration of In2O3 was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band (In ɛ5p) and descended O 2p-band (O ɛ2p) centers as efficient active sites for chemisorption to *OH and *H during forward HOS, respectively, along with a declined In 4d-band center (In ɛ4d) to inhibit its backward reaction. A stable STH efficiency of 2.23% under AM 1.5 G irradiation at 65 °C has been obtained over the activated d10 electronic configuration with a lowered activation energy for H2 evolution, verified by femtosecond transient absorption spectroscopy, in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics. These findings devote to activating d10 electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS, which expands the exploration of high-efficiency catalytic materials.