W10Re alloy is preferred for computed tomography anodes with high molar heat capacity. The deformed W10Re alloy will undergo recrystallization and grain growth during service, resulting in reduced mechanical properties, thermal shock resistance, and service life. The aim of this work is to study the microstructure of the warm-rolled W10Re alloy, its evolution of microstructure and mechanical properties after annealing at 1500 °C. During annealing at 1500 °C, recrystallization and growth of the deformed grain occurred with a latent period. The characteristics of deformed grains in the as-rolled alloy and the variation of kernel average misorientation (KAM) and geometrically necessary dislocations (GND) densities during recrystallization are discussed in detail. In high-temperature annealing, lower stored energy can allow the recrystallization behavior to have a latent period, and the residual deformation of the grain can be retained for a long time. In elevated temperatures, the deterioration of the mechanical properties of the alloy is initially evidenced by a notable decline in strength. This is subsequently followed by the loss of plasticity, which occurs as a result of the further degradation of the structure.
Read full abstract