Because of its highly unstable nature, TXA 2, produced by platelet metabolism of arachidonic acid, does not lend itself to use as a receptor probe for its own receptor. As such, the stable TXA 2/PGH 2 antagonist, trans-13-azaprostanoic acid ( trans-13-APA, 12b), was prepared as the [17,18 3H] derivative ([ 3H] trans-13-APA, 12c) to study this receptor and to better evaluate the mechanism of action of these azaprostanoids. Tritiated trans-13-APA, 12c, was prepared in nearly theoretical specific activity (57 Ci/mmole) from (17z)- trans-13-azaprost-17-enoic acid (11b) by catalytic tritiation. The unsaturated 11b was prepared by condensation of cis-7-amino-3-heptene (8) with 2-(6-carboxyhexyl) cyclopentanone (9), NaBH 4 reduction, chromatography, and hydrolysis of the trans isomer so isolated. The olefins 11a and b were also of biochemical interest because of the unsaturation in the lower side chain. The presence of similar unsaturation in PGH 3 (4) and TXA 3 (3) renders these prostaglandins inactive as proaggregatory agents. Evaluation of the antiaggregatory activity of 11a and b indicated it to be about the same potency in inhibiting human platelet aggregation as the parent cis and trans-13-APAs, suggesting that introduction of a double bond at the 17 position in platelet prostaglandin antagonists is unlikely to result in enhanced antiplatelet activity.
Read full abstract