Ethno-pharmacological relevanceHuangqi Gegen decoction (HGD), which comprises Astragali Radix (AR) and Puerariae Radix (PR), is widely used to treat thrombosis in China. However, the mechanism underlying its synergistic effect in thrombosis treatment remains unclear. Aim of the studyFollowing PR administration, low plasma exposure was reported for its primary ingredients. In this regard, this study examined the effect of AR on PR's antithrombotic efficacy with respect to the impact of Astragalus Polysaccharide (APS) on the oral delivery of Puerarin (PUE). Materials and methodsTo evaluate the synergistic effect of HGD, a thrombus mice model was established via intraperitoneal injection of carrageenan. After treatment, histopathological observations were made, and the proportion of thrombus length in the tail, as well as the plasma APTT, PT, INR, and FIB levels, were detected. Molecular docking was employed to assess the PR ingredients that could inhibit the HMGB1/NF-κB/NLRP3 pathway. The Pharmacokinetics of PR ingredients in rats were also compared between the PR and HGD groups. Moreover, the effect of APS on the solubility, intestinal absorption, and pharmacokinetics of PUE was evaluated. Furthermore, the impact of APS on the antithrombotic efficacy of PUE was assessed. ResultsIn mice, AR enhanced the antithrombotic effect of PR. This improved PR effect was associated with isoflavones-induced downregulation of the HMGB1/NF-κB/NLRP3 pathway. The synergistic effect resulting from the compatibility of HGD components was primarily achieved by improving the plasma exposure of PR isoflavones. Specifically, APS enhanced PUE's water solubility through the formation of self-assembly Nanoparticles, increasing its intestinal absorption and oral bioavailability, which, in turn, suppressed the HMGB1/NF-κB/NLRP3 pathway, thus improving its antithrombotic effect. ConclusionsOur findings revealed that APS improved PUE's plasma exposure, enhancing its inhibitory effect on the HMGB1/NF-κB/NLRP3 pathway. This mechanism presents a key aspect of the synergistic effect of HGD compatibility in thrombosis treatment.