This paper tests the applicability of the Functional Habitat Concept (FHC) to a lowland tropical river in Australia. The underlying tenet of the FHC is that in-stream hydrological and physical processes form distinct habitats, and where these habitats support distinct macroinvertebrate assemblages they are considered ‘functional’ habitats. This concept has been employed in the northern hemisphere as a tool for river restoration and management, especially where habitats are easier to manage than species, but the FHC has yet to be tested in Australia. This study reports the application of the FHC to the regulated Lower Ord River (LOR) in the remote far north of Western Australia. Seven ‘potential’ in-stream habitat units were identified on the basis of their physical properties. Multivariate and species preference analysis of macroinvertebrate data indicated that these habitats supported six distinct macroinvertebrate assemblages, providing six ‘functional’ habitats (gravel runs and rock rapids, sand margins, mud/silt margins, flooded riparian vegetation, emergent vegetation, and submerged macrophyte beds). Macroinvertebrate preferences for particular habitats reflected the broad ecology and life-history characteristics of the species, which in turn reflected the physical attributes of the habitats. We argue that in a region where the fauna has been little studied, and for which there is little ecological information, the FHC is a valuable approach. For a river that is facing increased water abstraction, the FHC potentially aids in the preservation of macroinvertebrate diversity as it identifies critical functional habitats for managers to maintain.
Read full abstract